Abstract

Hydrogenation effects on the crystal structures and magnetic properties of Tb2Co2Ga, Tb2Ni2Ga, and Tb3Co3Ga were studied. Tb2Co2Ga, Tb2Ni2Ga (both structure type W2CoB2), and Tb3Co3Ga (structure type W3CoB3) are structurally related belonging to inhomogeneous linear structure series based on the TlI- (also referred to as CrB type) and YAlGe- (ordered derivative of the binary type UPt2) type structure motives. The hydrides Tb2Co2GaH6.2, Tb3Co3GaH9.7, and Tb2Ni2GaH5.1 were synthesized at room temperature with hydrogen pressures of 52–53 ​kPa. Hydrogenation results in strongly anisotropic lattice volume expansion ΔV/V ​= ​19.2–20.0%. It also leads to a decrease of the Curie temperature in ferromagnetic Tb2Co2Ga and Tb3Co3Ga and practically suppresses the antiferromagnetic ordering in Tb2Ni2Ga. A model of the crystal structure of the hydride Tb3Co3GaH10 with four hydrogen positions was suggested based on stronger effect of hydrogenation on the TlI-type slabs. The more complex character of the magnetic phase transitions for Tb2Co2Ga and Tb3Co3Ga presumes involvement of Co in the magnetism of these compounds, while Tb2Ni2Ga acts as a typical 4f-electron system with dominating RKKY exchange interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.