Abstract

Crystal structure prediction techniques coupled with enthalpies obtained at 0 K from density functional theory calculations suggest that pressure can be used to stabilize the chlorides of xenon. In particular, XeCl and XeCl2 were calculated to become metastable by 10 GPa and thermodynamically stable with respect to the elemental phases by 60 GPa. Whereas at low pressures Cl2 dimers were found in the stable phases, zigzag Cl chains were present in Cmcm XeCl at 60 GPa and atomistic chlorine comprised P63/mmc XeCl and Fd3̅m XeCl2 at 100 GPa. A XeCl4 phase that was metastable at 100 GPa contained monomers, dimers, and trimers of chlorine. XeCl, XeCl2, and XeCl4 were metallic at 100 GPa, and at this pressure they were predicted to be superconducting below 9.0, 4.3, and 0.3 K, respectively. Spectroscopic properties of the predicted phases are presented to aid in their eventual characterization, should they ever be synthesized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.