Abstract

Sodium ion batteries have garnered significant research attention in recent years due to the rising demand for large-scale energy storage solutions as well as the high abundance of sodium. P2-type layered oxide materials have been identified as promising positive electrode materials for sodium ion batteries. Previously, P2–Na2/3Ni1/3Mn2/3O2 was shown to have a high operating voltage and high capacity but suffers from a step-like voltage curve and capacity loss during cycling, potentially due to its P2–O2 transition at high voltages. One strategy to improve cycling performance has been to dope Ni2+ with other 2+ cations, such as Zn2+ or Mg2+, which improved capacity retention but significantly decreases reversible capacity, since these ions were not electrochemically active. Since Cu2+ has been shown to be electrochemically active, we replaced Ni2+ with Cu2+, resulting in air-stable Na2/3Ni1/3–xCuxMn2/3O2 (0 ≤ x ≤ 1/3). Both Ni2+/Ni4+ and Cu2+/Cu3+ participate in the redox reaction during cycling, capacity...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.