Abstract

Myoglobins reconstituted with aqua- and cyano-Co(III) tetradehydrocorrins, rMb(Co(III)(OH2)(TDHC)) and rMb(Co(III)(CN)(TDHC)), respectively, were prepared and investigated as models of a cobalamin-dependent enzyme. The former protein was obtained by oxidation of rMb(Co(II)(TDHC)) with K3[Fe(CN)6]. The cyanide-coordinated Co(III) species in the latter protein was prepared by ligand exchange of rMb(Co(III)(OH2)(TDHC)) with exogenous cyanide upon addition of KCN. The X-ray crystallographic study reveals the hexacoordinated structures of rMb(Co(III)(OH)(TDHC)) and rMb(Co(III)(CN)(TDHC)) at 1.20 and 1.40 Å resolution, respectively. The (13)C NMR chemical shifts of the cyanide in rMb(Co(III)(CN)(TDHC)) were determined to be 108.6 and 110.6 ppm. IR measurements show that the cyanide of rMb(Co(III)(CN)(TDHC)) has a stretching frequency peak at 2151 cm(-1) which is higher than that of cyanocobalamin. The (13)C NMR and IR measurements indicate weaker coordination of the cyanide to Co(III)(TDHC) relative to cobalamin, a vitamin B12 derivative. Thus, the extent of π-back-donation from the cobalt ion to the cyanide ion is lower in rMb(Co(III)(CN)(TDHC)). Furthermore, the pK(1/2) values of rMb(Co(III)(OH2)(TDHC)) and rMb(Co(III)(CN)(TDHC)) were determined by a pH titration experiment to be 3.2 and 5.5, respectively, indicating that the cyanide ligation weakens the Co-N(His93) bond. Theoretical calculations also demonstrate that the axial ligand exchange from water to cyanide elongates the Co-N(axial) bond with a decrease in the bond dissociation energy. Taken together, the cyano-Co(III) tetradehydrocorrin in myoglobin is appropriate for investigation as a structural analogue of methylcobalamin, a key intermediate in methionine synthase reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call