Abstract

Amino acid dehydrogenases (AADHs) have shown considerable potential as biocatalysts in the asymmetric synthesis of chiral amino acids. However, compared to the widely studied α-AADHs, limited knowledge is available about β-AADHs that enable the synthesis of β-amino acids. Herein, we report the crystal structures of a l-erythro-3,5-diaminohexanoate dehydrogenase and its variants, the only known member of β-AADH family. Crystal structure analysis, site-directed mutagenesis studies and quantum chemical calculations revealed the differences in the substrate binding and catalytic mechanism from α-AADHs. A number of rationally engineered variants were then obtained with improved activity (by 110-800 times) toward various aliphatic β-amino acids without an enantioselectivity trade-off. Two β-amino acids were prepared by using the outstanding variants with excellent enantioselectivity (>99 % ee) and high isolated yields (86-87 %). These results provide important insights into the molecular mechanism of 3,5-DAHDH, and establish a solid foundation for further design of β-AADHs for the asymmetric synthesis of β-amino acids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.