Abstract

Hydrogen-bonded organic frameworks (HOFs) have emerged as rapidly growing porous materials while established permanent porosities are very fragile and difficult to stabilize due to weak hydrogen-bonding interactions among building units. Herein, we report a stable hydrogen-bonded metallotecton framework (termed as HOF-ZJU-102) that was constructed through hydrogen-bonding networks between cationic metal-organic complexes [Cu2 (Hade)4 (H2 O)2 ]4+ (Hade=adenine) and GeF6 2- anions. The framework not only shows permanent porosity, but also exhibits efficient separation performance of C2 H2 /C2 H4 at room temperature. More interestingly, its crystal structure could be irreversibly transformed into isostructural counterpart HOF-ZJU-101 by ion exchange in the SiF6 2- containing solution, evidenced by multiple characterization techniques including gas sorption measurements, 19 F NMR spectra, FTIR and EDS. Utilizing such an ion exchange mechanism, the collapsed HOF-ZJU-102 could be restored into HOF-ZJU-101 by simply soaking in the salt solution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call