Abstract

Single crystals of 2-methylbenzimidazolium perchlorate were prepared for the first time with a slow evaporation method from an aqueous solution of a mixture of 2-methylbenzimidazole (MBI) crystals and perchloric acid HClO4. The crystal structure was determined by single crystal X-ray diffraction (XRD) and confirmed by XRD of powder. Angle-resolved polarized Raman and Fourier-transform infrared (FTIR) absorption spectra of crystals consist of lines caused by molecular vibrations in MBI molecule and ClO4- tetrahedron in the region ν = 200-3500 cm-1 and lattice vibrations in the region of 0-200 cm-1. Both XRD and Raman spectroscopy show a protonation of MBI molecule in the crystal. An analysis of ultraviolet-visible (UV-Vis) absorption spectra gives an estimation of an optical gap Eg~3.9 eV in the crystals studied. Photoluminescence spectra of MBI-perchlorate crystals consist of a number of overlapping bands with the main maximum at Ephoton ≅ 2.0 eV. Thermogravimetry-differential scanning calorimetry (TG-DSC) revealed the presence of two first-order phase transitions with different temperature hysteresis at temperatures above room temperature. The higher temperature transition corresponds to the melting temperature. Both phase transitions are accompanied by a strong increase in the permittivity and conductivity, especially during melting, which is similar to the effect of an ionic liquid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call