Abstract
The asymmetric unit of the title compound, trans-di-aqua-(3,10-dimethyl-1,3,5,8,10,12-hexa-aza-cyclo-tetra-decane-κ4 N 1,N 5,N 8,N 12)copper(II) 4,4'-methyl-ene-bis(3-hy-droxy-naphthalene-2-carboxyl-ate), [Cu(C10H26N6)(H2O)2](C23H14O6) {[Cu(L)(H2O)2](pam), where L = 3,10-dimethyl-1,3,5,8,10,12-hexa-aza-cyclo-tetra-decane and pam = dianion of pamoic acid} consists of two independent halves of the [Cu(L)(H2O)2]2+ cation and one di-carboxyl-ate anion. The CuII atoms, lying on inversion centres, are coordinated by the four secondary N atoms of the macrocyclic ligands and the mutually trans O atoms of the water mol-ecules in a tetra-gonally elongated octa-hedral geometry. The average equatorial Cu-N bond length is significantly shorter than the average axial Cu-O bond length [2.007 (10) and 2.486 (18) Å, respectively]. The macrocyclic ligand in the complex cations adopts the most energetically stable trans-III conformation. The complex cations and anions are connected via hydrogen-bonding inter-actions between the N-H groups of the macrocycles and the O-H groups of coordinated water mol-ecules as the proton donors and the O atoms of the carboxyl-ate as the proton acceptors into layers lying parallel to the (11) plane.
Highlights
Hexaazacyclotetradecane and pam = dianion of pamoic acid} consists of two independent halves of the [Cu(L)(H2O)2]2+ cation and one dicarboxylate anion
The complex cations and anions are connected via hydrogen-bonding interactions between the N—H groups of the macrocycles and the O—H groups of coordinated water molecules as the proton donors and the O atoms of the carboxylate as the proton acceptors into layers lying parallel to the (111) plane
Each CuII ion lies on an inversion centre and is coordinated in the equatorial plane by four secondary amine N atoms of the azamacrocyclic ligand in a square-planar fashion, and by two O atoms from the water molecules in the axial positions, resulting in a tetragonally distorted octahedral geometry (Table 1, Fig. 1)
Summary
This dicarboxylic acid is built from two naphthalene fragments, each bearing carboxylic and hydroxyl substituents and linked by a methylene bridge. The combination of this potentially bridging ligand with a biometal complex (e.g. CuII) could be a promising candidate for the construction of the Bio–MOFs attracting currently considerable attention (Cai et al, 2019). Each hydroxylic group exhibits a strong intra-anion O—HÁ Á ÁO bond with the adjacent carboxyl oxygen (DÁ Á ÁA distances ca 2.5 A ; Table 2)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta crystallographica. Section E, Crystallographic communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.