Abstract

Pantothenate synthetase (PS) from Mycobacterium tuberculosis represents a potential target for antituberculosis drugs. PS catalyzes the ATP-dependent condensation of pantoate and beta-alanine to form pantothenate. Previously, we determined the crystal structure of PS from M. tuberculosis and its complexes with AMPCPP, pantoate, and pantoyl adenylate. Here, we describe the crystal structure of this enzyme complexed with AMP and its last substrate, beta-alanine, and show that the phosphate group of AMP serves as an anchor for the binding of beta-alanine. This structure confirms that binding of beta-alanine in the active site cavity can occur only after formation of the pantoyl adenylate intermediate. A new crystal form was also obtained; it displays the flexible wall of the active site cavity in a conformation incapable of binding pantoate. Soaking of this crystal form with ATP and pantoate gives a fully occupied complex of PS with ATP. Crystal structures of these complexes with substrates, the reaction intermediate, and the reaction product AMP provide a step-by-step view of the PS-catalyzed reaction. A detailed reaction mechanism and its implications for inhibitor design are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.