Abstract

Propionyl-coenzyme A carboxylase (PCC), a mitochondrial biotin-dependent enzyme, is essential for the catabolism of the amino acids Thr, Val, Ile and Met, cholesterol, and fatty acids with an odd number of carbon atoms. Deficiencies of PCC activity in humans are linked to the disease propionic acidemia (PA), an autosomal recessive disorder that can be fatal in infants 1–4. The holoenzyme of PCC is an α6β6 dodecamer, with a molecular weight of 750 kD. The α subunit contains the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains, while the β subunit supplies the carboxyltransferase (CT) activity. Here we report the crystal structure at 3.2 Å resolution of a bacterial PCC α6β6 holoenzyme as well as cryo-electron microscopy (cryo-EM) reconstructionat 15 Å resolution demonstrating a similar structure for human PCC. The structure defines the overall architecture of PCC and reveals unexpectedly that the α subunits are arranged as monomers in the holoenzyme, decorating a central β6 hexamer. A hitherto unrecognized domain in the α subunit, formed by residues between the BC and BCCP domains, is crucial for interactions with the β subunit. We have named it the BT domain. The structure reveals for the first time the relative positions of the BC and CT active sites in the holoenzyme. They are separated by approximately 55 Å, indicating that the entire BCCP domain must translocate during catalysis. The BCCP domain is located in the active site of the β subunit in the current structure, providing insight for its involvement in the CT reaction. The structural information establishes a molecular basis for understanding the large collection of disease-causing mutations in PCC, and also has important relevance for the holoenzymes of other biotin-dependent carboxylases, including 3-methylcrotonyl-CoA carboxylase (MCC) 5–7 and eukaryotic acetyl-CoA carboxylase (ACC) 8,9.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.