Abstract

Peroxiredoxin (Prx) is a thiol-based peroxidase that eliminates reactive oxygen species to avoid oxidative damage. Alkyl hydroperoxide reductase Ahp1 is a novel and specific typical 2-cysteine Prx. Here, we present the crystal structure of sulfonic Ahp1 complexed with thioredoxin Trx2 at 2.12 Å resolution. This structure implies that the transient Ahp1-Trx2 complex during the catalytic cycle already have an ability to decompose the peroxides. Structural analysis reveals that the segment glutamine23–lysine32 juxtaposed to the resolving cysteine (CR) of Ahp1 moves inward to generate a compact structure upon peroxidatic cysteine (CP) overoxidation, resulting in the breakdown of several conserved hydrogen bonds formed by Ahp1-Trx2 complex interaction. Structural comparisons suggest that the structure of sulfonic Ahp1 represents a novel conformation of Ahp1, which can mimic a conformational intermediate between the reduced and oxidized forms. Therefore, this study may provide a new structural insight into the intermediate state in which the segment glutamine23–lysine32 juxtaposed to the cysteine31 (CR) undergoes a conformational change upon cysteine62 (CP) oxidation to prepare for the formation of an intermolecular CP-CR disulfide bond during Ahp1 catalytic cycle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call