Abstract

A symbiosis-related lectin, SLL-2, from the octocoral Sinularia lochmodes, distributes densely on the cell surface of microalgae, Symbiodinium sp., an endosymbiotic dinoflagellate of the coral, and is also shown to be a chemical cue that transforms dinoflagellates into a nonmotile (coccoid) symbiotic state. SLL-2 binds to the sugar chain of the molecule similar to Forssman antigen pentasaccharide (GalNAcα1-3GalNAcβ1-3 Galα1-4 Galβ1-4Glc) on the surface of microalgae with high affinity. Here we report the crystal structure of the complex between SLL-2 and Forssman antigen tetrasaccharide (GalNAcα1-3GalNAcβ1-3 Galα1-4 Galβ) at 3.4 Å resolution. In an asymmetric unit of the crystal, there are two hexameric molecules with totally 12 sugar recognition sites. At 9 in 12 sites, the first and second saccharides of the Forssman antigen tetrasaccharide bind directly to galactopyranoside binding site of SLL-2, whereas the third and fourth saccharides have no interaction with the SLL-2 hexameric molecule that binds the first saccharide. The sugar chain bends at α-1,4-glycosidic linkage between the third and fourth saccharides toward the position that we defined as a pyranoside binding site in the crystal structure of the complex between SLL-2 and GalNAc. The structure allowed us to suggest a possible binding mode of the Forssman antigen pentasaccharide to SLL-2. These observations support our hypothesis that the binding of SLL-2 to the cell surface sugars of zooxanthella in a unique manner might trigger some physiological changes of the cell to adapt symbiosis with the host coral.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call