Abstract

The crystal structures of three ternary Ni-Zn borides have been elucidated by means of X-ray single-crystal diffraction (XSC) and X-ray powder diffraction techniques (XPD) in combination with electron microprobe analyses (EMPA) defining the Ni/Zn ratio. Ni(21)Zn(2)B(24) crystallizes in a unique structure type (space group I4/mmm; a = 0.72103(1) nm and c = 1.42842(5) nm; R(F)(2) = 0.017), which contains characteristic isolated cages of B(20) units composed of two corrugated octogonal boron rings, which are linked at four positions via boron atoms. The B(20) units appear to have eight-membered rings on all six faces like the faces of a cube. Each face is centered by a nickel atom. The six nickel atoms are arranged in the form of an octahedron nested within the B(20) unit. Such a boron aggregation is unique and has never been encountered before in metal-boron chemistry. The crystal structure of Ni(12)ZnB(8-x) (x = 0.43; space group Cmca, a = 1.05270(2) nm, b = 1.45236(3) nm, c = 1.45537(3) nm; R(F)(2) = 0.028) adopts the structure type of Ni(12)AlB(8) with finite zigzag chains of five boron atoms. The compound Ni(3)ZnB(2) crystallizes in a unique structure type (space group C2/m, a = 0.95101(4) nm, b = 0.28921(4) nm, c = 0.84366(3) nm, β = 101.097(3)°, and R(F)(2) = 0.020) characterized by B(4) zigzag chain fragments with B-B bond lengths of 0.183-0.185 nm. The Ni(3)ZnB(2) structure is related to the Dy(3)Ni(2) type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.