Abstract

The penultimate step in the biosynthesis of biotin is the closure of the ureido heterocycle in a reaction requiring a nucleoside triphosphate (NTP). In Mycobacterium tuberculosis this reaction is catalyzed by dethiobiotin synthetase (MtDTBS). MtDTBS is unusual as it can employ multiple (NTPs), with a >100-fold preference for cytidine triphosphate (CTP). Here the molecular basis of NTP binding was investigated using a surface plasmon resonance-based ligand binding assay and X-ray crystallography. The biophysical and structural data revealed two discrete mechanisms by which MtDTBS binds NTPs: (i) A high affinity binding mode employed by CTP (KD 160 nM) that is characterized by a slow dissociation rate between enzyme and ligand (kd 5.3 × 10–2 s–1) and that is defined by an extended network of specific ligand–protein interactions involving both the cytidine and triphosphate moieties and (ii) a low affinity mode employed by the remaining NTPs (KD > 16.5 μM), that is characterized by weak interactions between p...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.