Abstract

Purine nucleoside phosphorylase (PNP) catalyzes the phosphorolysis of the N-ribosidic bonds of purine nucleosides and deoxynucleosides. PNP is a target for inhibitor development aiming at T-cell immune response modulation and has been submitted to extensive structure-based drug design. More recently, the 3-D structure of human PNP has been refined to 2.3 Å resolution, which allowed a redefinition of the residues involved in the substrate-binding sites and provided a more reliable model for structure-based design of inhibitors. This work reports crystallographic study of the complex of Human PNP:guanine (HsPNP:Gua) solved at 2.7 Å resolution using synchrotron radiation. Analysis of the structural differences among the HsPNP:Gua complex, PNP apoenzyme, and HsPNP:immucillin-H provides explanation for inhibitor binding, refines the purine-binding site, and can be used for future inhibitor design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call