Abstract
Reorganization of the actin filament is an essential process for cell motility, cell–cell attachment and intracellular transport. Formin proteins promote nucleation and elongation of the actin filament, and thus are key regulators for this process. The formin homology 2 (FH2) domain forms a head-to-tail ring-shaped dimer, and processively moves towards the barbed end. Dishevelled-associated activator of morphogenesis (DAAM) is a Rho-regulated formin implicated in neuronal development. Here, we present the crystal structure of human DAAM1 FH2 dimer at 2.8 A resolution. This is the first dimeric structure of the mammalian formin. The core structure of human DAAM1 is similar to those of mouse mDia1 and yeast Bni1p, whereas the orientations of the FH2 dimeric rings are different between human DAAM1 and yeast Bni1p, despite their similar dimer interactions. This difference supports the previous prediction that the dimer architecture of the formin is highly flexible in the actin-free state. The results of the actin assembly assays using the DAAM1 mutants demonstrated that the length of the linker connecting the N-terminal domain and the core region is crucial for the activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Crystallographica Section A Foundations of Crystallography
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.