Abstract
The crystal structure of haloxon has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional theory techniques. Haloxon crystallizes in space group P21/n (#14) with a = 19.60382(6), b = 10.05473(3), c = 8.73591(2) Å, β = 92.6617(2)°, V = 1720.088(11) Å3, and Z = 4. The structure consists of discrete molecules. The mean planes of the fused ring systems are approximately 0–11 and 011. The rings form staggered stacks perpendicular to these planes. There are no traditional hydrogen bonds in the structure, but several C–H⋯O and C–H⋯Cl hydrogen bonds contribute to the crystal energy. The powder pattern has been submitted to ICDD for inclusion in the Powder Diffraction File™ (PDF®).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.