Abstract

Formaldehyde dehydrogenase from Pseudomonas putida (PFDH) is a member of the zinc-containing medium-chain alcohol dehydrogenase (ADH) family. The pyridine nucleotide NAD(H) in PFDH, which is distinct from the coenzyme (as co-substrate) in typical ADHs, is tightly but not covalently bound to the protein and acts as a cofactor. Such enzymes with tightly bound NAD(P)(H) acting as a cofactor are called nicotinoproteins. The structural basis of the tightly bound cofactor of PFDH is unknown. The crystal structure of PFDH has been solved by the multiwavelength anomalous diffraction method using intrinsic zinc ions and has been refined at a 1.65 Å resolution. The 170-kDa-homotetrameric PFDH molecule shows 222-point group symmetry. Although the secondary structure arrangement and the binding mode of catalytic and structural zinc ions in PFDH are similar to those of typical ADHs, a number of loop structures that differ between PFDH and ADHs in their lengths and conformations are observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.