Abstract

Calpains are Ca(2+) dependent intracellular cysteine proteases that cleave a wide range of protein substrates to help implement Ca(2+) signaling in the cell. The major isoforms of this enzyme family, calpain-1 and calpain-2, are heterodimers of a large and a small subunit, with the main dimer interface being formed through their C-terminal penta-EF hand (PEF) domains. Calpain-3, or p94, is a skeletal muscle-specific isoform that is genetically linked to limb-girdle muscular dystrophy. Biophysical and modeling studies with the PEF domain of calpain-3 support the suggestion that full-length calpain-3 exists as a homodimer. Here, we report the crystallization of calpain-3's PEF domain and its crystal structure in the presence of Ca(2+) , which provides evidence for the homodimer architecture of calpain-3 and supports the molecular model that places a protease core at either end of the elongated dimer. Unlike other calpain PEF domain structures, the calpain-3 PEF domain contains a Ca(2+) bound at the EF5-hand used for homodimer association. Three of the four Ca(2+) -binding EF-hands of the PEF domains are concentrated near the protease core, and have the potential to radically change the local charge within the dimer during Ca(2+) signaling. Examination of the homodimer interface shows that there would be steric clashes if the calpain-3 large subunit were to try to pair with a calpain small subunit. Database Structural data are available in the Protein Data Bank database under accession number 4OKH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.