Abstract
The 1.9 A resolution crystal structure of PII from Arabidopsis thaliana reveals for the first time the molecular structure of a widely conserved regulator of carbon and nitrogen metabolism from a eukaryote. The structure provides a framework for understanding the arrangement of highly conserved residues shared with PII proteins from bacteria, archaea, and red algae as well as residues conserved only in plant PII. Most strikingly, a highly conserved segment at the N-terminus that is found only in plant PII forms numerous interactions with the alpha2 helix and projects from the surface of the homotrimer opposite to that occupied by the T-loop. In addition, solvent-exposed residues near the T-loop are highly conserved in plants but differ in prokaryotes. Several residues at the C-terminus that are also highly conserved only in plants contribute part of the ATP-binding site and likely participate in an ATP-induced conformational change. Structures of PII also reveal how citrate and malonate bind near the triphosphate binding site occupied by ATP in bacterial and archaeal PII proteins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.