Abstract
Bacillus cereus ATCC 14579 is a known polyhydroxybutyrate (PHB)-producing microorganism that possesses genes associated with PHB synthesis such as PhaA, PhaB, and PHA synthases. PhaA (i.e., thiolase) is the first enzyme in the PHA biosynthetic pathway, which catalyze the condensation of two acetyl-CoA molecules to acetoacetyl-CoA. Our study elucidated the crystal structure of PhaA in Bacillus cereus ATCC 14579 (BcTHL) in its apo- and CoA-bound forms. BcTHL adopts a type II biosynthetic thiolase structure by forming a tetramer. The crystal structure of CoA-complexed BcTHL revealed that the substrate binding site of BcTHL is constituted by different residues compared with other known thiolases. Our study also revealed that Arg221, a residue involved in ADP binding, undergoes a positional conformational change upon the binding of the CoA molecule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.