Abstract

Poliovirus (PV) 2CATPase is the most studied 2C protein in the Picornaviridae family. It is involved in RNA replication, encapsidation and uncoating and many inhibitors have been found that target PV 2CATPase. Despite numerous investigations to characterize its functions, a high-resolution structure of PV 2C has not yet been determined. We report here the crystal structure of a soluble fragment of PV 2CATPase to 2.55Å, containing an ATPase domain, a zinc finger and a C-terminal helical domain but missing the N-terminal domain. The ATPase domain shares the common structural features with EV71 2C and other Superfamily 3 helicases. The C-terminal cysteine-rich motif folds into a CCCC type zinc finger in which four cysteine ligands and several auxiliary residues assist in zinc binding. By comparing with the known zinc finger fold groups, we found the zinc finger of 2C proteins belong to a new fold group, which we denote the “Enterovirus 2C-like” group. The C-terminus of PV 2CATPase forms an amphipathic helix that occupies a hydrophobic pocket located on an adjacent PV 2CATPase in the crystal lattice. The C-terminus mediated PV 2C-2C interaction promotes self-oligomerization, most likely hexamerization, which is fundamental to the ATPase activity of 2C. The zinc finger is the most structurally diverse feature in 2C proteins. Available structural and virological data suggest that the zinc finger of 2C might confer the specificity of interaction with other proteins. We built a hexameric ring model of PV 2CATPase and visualized the previously identified functional motifs and drug-resistant sites, thus providing a structure framework for antiviral drug development.

Highlights

  • Poliovirus (PV) is the pathogen of poliomyelitis

  • Anti-poliovirus drugs will be critical in controlling transmission of vaccinederived polioviruses and in treating patients with chronic infection

  • Considering that surface-entropy reduction may favor crystallization [45], we predicted a set of surface residues charges based on enterovirus 71 (EV71) 2C structure [21]

Read more

Summary

Introduction

Poliovirus (PV) is the pathogen of poliomyelitis. Since the launch of Global Polio Eradication Initiative (http://polioeradication.org/) by the World Health Assembly, the number of poliomyelitis cases have been significantly reduced. The incidence of paralytic polio in 1988 was 1,000 children per day, and this number decreased to 400 per day in 2013[2]. To overcome the last hurdles in the endgame phase, effective anti-PV drugs are critical in controlling transmission of vaccine-derived polioviruses (VDPVs) and in treating patients with chronic infection or personnel casually exposed to PV [3]. To minimize poliomyelitis risk in the “post-polio” era, the National Research Council of the Unite States concluded that the development of antiviral drugs would be important, and possibly essential [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call