Abstract

The Mob protein family comprises a group of highly conserved eukaryotic proteins whose founding member functions in the mitotic exit network. At the molecular level, Mob proteins act as kinase-activating subunits. We cloned a human Mob1 family member, Mob1A, and determined its three-dimensional structure by X-ray crystallography. The core of Mob1A consists of a four-helix bundle that is stabilized by a bound zinc atom. The N-terminal helix of the bundle is solvent exposed and together with adjacent secondary structure elements forms an evolutionarily conserved surface with a strong negative electrostatic potential. Several conditional mutant alleles of S. cerevisiae MOB1 target this surface and decrease its net negative charge. Interestingly, the kinases with which yeast Mob proteins interact have two conserved basic regions within their N-terminal lobe. Thus, Mob proteins may regulate their target kinases through electrostatic interactions mediated by conserved charged surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.