Abstract

Alumina (alpha-Al(2)O(3)) has been widely used as a pressure calibrant in static high-pressure experiments and as a window material in dynamic shock-wave experiments; it is also a model material in ceramic science. So understanding its high-pressure stability and physical properties is crucial for interpreting such experimental data, and for testing theoretical calculations. Here we report an in situ X-ray diffraction study of alumina (doped with Cr(3+)) up to 136 GPa and 2,350 K. We observe a phase transformation that occurs above 96 GPa and at high temperatures. Rietveld full-profile refinements show that the high-pressure phase has the Rh(2)O(3) (II) (Pbcn) structure, consistent with theoretical predictions. This phase is structurally related to corundum, but the AlO(6) polyhedra are highly distorted, with the interatomic bond lengths ranging from 1.690 to 1.847 A at 113 GPa. Ruby luminescence spectra from Cr(3+) impurities within the quenched samples under ambient conditions show significant red shifts and broadening, consistent with the different local environments of chromium atoms in the high-pressure structure inferred from diffraction. Our results suggest that the ruby pressure scale needs to be re-examined in the high-pressure phase, and that shock-wave experiments using sapphire windows need to be re-evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.