Abstract
The adenosine A2A receptor (A2AAR) is a prototypical member of the class A subfamily of G-protein-coupled receptors (GPCRs) that is widely distributed in various tissues and organs of the human body, and participates in many important signal-regulation processes. We have previously summarized a common activation pathway of class A GPCRs in which a series of conserved residues/motifs undergo conformational change during extracellular agonist binding and finally induce the coupling of intracellular G protein. Through this mechanism we have successfully predicted several novel constitutive active or inactive mutations for A2AAR. To reveal the molecular mechanism of mutation-induced constitutive activity, we determined the structure of a typical mutant I92N complexed with the agonist UK-432097. The mutated I92N forms a hydrophilic interaction network with nearby residues including Trp6.48 of the CWxP motif, which is absent in wild-type A2AAR. Although the mutant structure is similar overall to the previously determined intermediate-state A2AAR structure (PDB ID 3qak) [Xu, Wu, Katritch, Han, Jacobson, Gao, Cherezov & Stevens (2011). Science, 332, 322-327 ▸], molecular dynamics simulations suggest that the I92N mutant stabilizes the metastable intermediate state through the hydrophilic interaction network and favors the conformational transition of the receptor towards the active state. This research provides a structural template towards the special pharmacological outcome triggered by conformational mutation and sheds light on future structural or pharmaco-logical studies among class A GPCRs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.