Abstract
4-Hydroxybutyrate CoA-transferases (4-HB-CoAT) takes part in the fermentation of 4-aminobutyrate to ammonia, acetate, and butyrate in anaerobic bacteria such as Clostridium aminobutyricum and Porphyromonas gingivalis or facultative anaerobic bacteria such as Shewanella oneidensis. Site-directed mutagenesis of the highly active enzyme has identified the catalytic glutamate residue as E238. Crystal structure of this enzyme has been determined at a resolution of 1.85 A. The 438-amino acid residue polypeptide chain folds into two topologically similar domains with an open alpha/beta-fold, which is also found in other CoAT family I and family II members. The data indicate that the members of CoAT families I and II are closely related; the latter only lacking the catalytic glutamate residue. A putative co-substrate binding site for the 4-HB-CoAT was identified, in which a 4-hydroxybutyrate molecule has been modeled. This site is also responsible for binding the acetyl group of acetyl-CoA or the succinyl group of succinyl-CoA in succinyl-CoA:3-oxoacid CoA-transferase from mammalian mitochondria. Mutations of relevant active site amino acid residues have been produced and their activities tested to corroborate the proposed structural model for substrate binding. 4-HB-CoAT from C. aminobutyricum represents the only functionally characterized 4-HB-CoAT present in the structural database.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.