Abstract
Diarylethenes (DAEs) are an exciting class of stimulus-responsive organic molecules that exhibit electrocyclization reactions upon exposure to light, heat, or other stimuli. The rational design of DAE-based crystalline materials is, however, complicated by the presence of DAE atropisomers, only one of which is photoactive. Data mining of the CSD produced 1349 unique molecular DAE structures that were subsequently analyzed according to selected chemical and geometric attributes. Additional analyses were performed on 1078 dithienylethene (DTE) structures-the largest subgroup within the ensemble. The crystal structure landscape, based upon D-D parameterization and analysis, revealed a vast array of molecular geometries, many of which may not correspond to energetic minima. The analyses link various chemical and geometric parameters to isomers observed in the lattice and their reactivity; however, potential biases intrinsic to this ensemble of structures complicate the determination of causal relationships. We believe that this retrospective comprehensive analysis of DAE structures represents an important step for understanding more broadly the crystal landscape of this class of materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.