Abstract

In the title compound, C8H9BrN2O2, the C—O—C—C torsion angle between isonicotine and the ethyl group is 180.0 (2)°. Intramolecular N—H...O and C—H...O interactions consolidate the molecular structure. In the crystal, N—H...N interaction form S(5) zigzag chains along [010]. The most significant contributions to the Hirshfeld surface arise from H...H (33.2%), Br...H/H...Br (20.9%), O...H/H...O (11.2%), C...H/H...C (11.1%) and N...H/H...N (10%) contacts. The topology of the three-dimensional energy frameworks was generated using the B3LYP/6–31 G(d,p) model to calculate the total interaction energy. The net interaction energies for the title compound are E ele = 59.2 kJ mol−1, E pol = 15.5 kJ mol−1, E dis = 140.3 kJ mol−1 and E rep = 107.2 kJ mol−1 with a total interaction energy E tot of 128.8 kJ mol−1. The molecular structure was optimized by density functional theory (DFT) at the B3LYP/6–311+G(d,p) level and the theoretical and experimentally obtained parameters were compared. The frontier molecular orbitals HOMO and LUMO were generated, giving an energy gap ΔE of 4.0931 eV. The MEP was generated to identify active sites in the molecule and molecular docking studies carried out with the title compound (ligand) and the covid-19 main protease PDB ID: 6LU7, revealing a moderate binding affinity of −5.4 kcal mol−1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.