Abstract

Powder X-ray diffraction (PXRD) is a cornerstone technique in materials characterization. However, complete structure determination from PXRD patterns alone remains time-consuming and is often intractable, especially for novel materials. Current machine learning (ML) approaches to PXRD analysis predict only a subset of the total information that comprises a crystal structure. We developed a pioneering generative ML model designed to solve crystal structures from real-world experimental PXRD data. In addition to strong performance on simulated diffraction patterns, we demonstrate full structure solutions over a large set of experimental diffraction patterns. Benchmarking our model, we predicted the structure for 134 experimental patterns from the RRUFF database and thousands of simulated patterns from the Materials Project on which our model achieves state-of-the-art 42 and 67% match rate, respectively. Further, we applied our model to determine the unreported structures of materials such as NaCu2P2, Ca2MnTeO6, ZrGe6Ni6, LuOF, and HoNdV2O8 from the Powder Diffraction File database. We extended this methodology to new materials created in our lab at high pressure with previously unsolved structures and found the new binary compounds Rh3Bi, RuBi2, and KBi3. We expect that our model will open avenues toward materials discovery under conditions which preclude single crystal growth and toward automated materials discovery pipelines, opening the door to new domains of chemistry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.