Abstract

The M-type barium hexaferrite substituted with titanium, BaFe12−xTixO19, was synthesized from sodium carbonate flux and the obtained single crystals with a maximum degree of substitution of up to about x = 0.9 were characterized. XPS measurements were carried out for the identification of side products and in particular in order to assign the valence states of the transition-metal constituents. Due to the aliovalent exchange of iron(III) with titanium(IV), an additional charge balance needs to occur. No titanium(III) was detected, while the amount of iron(II) increased in the same order of magnitude as the amount of titanium(IV); thus, the major charge balancing is attributed to the reduction of iron(III) to iron(II). According to the XPS data, the amount of titanium(IV) typically is slightly higher than that of iron(II). This is in line with a tendency to a minor formation of vacancies on the transition-metal sites becoming more important at higher substitution levels according to PXRD and WDS measurements, completing the picture of the charge-balance mechanism. XRD taken on single crystals indicates the distribution of titanium and vacancies over three of the five transition-metal sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call