Abstract

AbstractThis study systematically investigated the structural, dielectric, and ferroelectric properties of BaAl(2−2x)(Mg0.5Ti0.5)2xO4 ceramics in the 0 ≤ x ≤ 0.04 range. Single‐phase solid solutions in the P63 space group with hexagonal crystal symmetry were confirmed in the composition range of 0 ≤ x ≤ 0.03. The bond lengths of Al1/(Mg,Ti)–O, Al2/(Mg,Ti)–O, and Al3/(Mg,Ti)–O increased with the increase in x, as confirmed through the Rietveld refinement and evolutions of corresponding modes in Raman spectra. The temperature stability of dielectric properties improved at a composition around x = 0.03, and the dielectric constant εr ascended with the increase in x. Ultrabroad temperature stability (−100°C to 700°C) was obtained, and an optimal combination (εr = 18.5, tan δ < 10−3, −22 ppm/°C ≤ TCC ≤ +20 ppm/°C, resistivity ~4.5 × 1014 Ω·cm) was achieved for the x = 0.03 ceramic sintered at 1260°C in air for 6 hours. The increase in stability was ascribed to the variations in axial bonds, and lattice distortions were determined through high‐resolution transmission electron microscopy. The x = 0.03 ceramic could be a promising candidate for C0G or NP0 multilayer ceramic capacitors because of its low loss, high reliability, superior insulating properties and comparatively low‐cost raw materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call