Abstract

(1 − x)BaTiO3–x(Bi0.5Na0.5)TiO3 (x ranged from 0.01 to 0.96) ceramics were fabricated by the conventional ceramic technique. The crystal structure, as well as dielectric and piezoelectric properties of the ceramics were studied. All the ceramics formed single-phase solid solutions with perovskite structure after sintering in air at 1150–1250 °C for 2–4 h. The crystal structure and microstructure varied gradually with the increase of (Bi0.5Na0.5)TiO3 (BNT) content. The Curie temperature, Tc, shifted monotonously to high temperature as BNT increased. The ceramics with 20–90 mol% BNT had relatively low and stable dielectric loss characteristics. The piezoelectric constant, d33, enhanced with the increase of BNT content through a maximum value in a composition of 93 mol% BNT and then tended to decrease. The maximum value, 148 pC/N, of piezoelectric constant d33 together with the electromechanical coupling factors, kt, 19.8% and kp, 15.8%, were obtained when BNT was 93 mol%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.