Abstract
The crystal structure of a copper antimonite (CuSb2O4) was determined from X-ray powder diffraction data. The structure was solved by simulated annealing in direct space using the Rietveld method. The compound crystallizes in tetragonal symmetry and space group P4 2 bc (106); unit cell parameters a = b = 8.76033(5) Å, c = 5.79786(4) Å, Z = 4, V = 444.947(5) Å3 and density (calc.) = 5.539 g cm−3. The CuO6 polyhedra are strongly elongated due to Jahn–Teller distortion in a [2+2+2] coordination arrangement, i.e. there are two long axial Cu–O1 bonds of 2.447(13) Å and in the equatorial plane there are two intermediate Cu–O2 bonds of 2.07(3) Å and two short Cu–O2 bonds of 1.88(2) Å. The SbO3 pyramidal arrangement is almost regular with Sb–O1 bonds of 1.97(2) Å (2×) and Sb–O2 of 1.959(5) Å. The experimentally obtained Raman spectrum is consistent with values obtained from theoretical modelling studies. The magnetic behaviour of this new compound suggests that it belongs to the class of S = 1/2 Heisenberg chain systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.