Abstract

The synthesis, crystal structure and magnetic properties of the cyano-bridged complex [{Cu(cyclam)}3{Fe(CN)6}2]·6H2O are reported. Its structure is made up of centrosymmetric S-shaped pentanuclear [{Cu(cyclam}3{Fe(CN)6)}2] units, in which three [Cu(cyclam)]2+ units are alternatively bridged by two trans-CN groups of [Fe(CN)6]3− anions and water molecules. The pentanuclear Fe2Cu3 units are held together by two complementary and very weak Fe–CN⋯Cu1 bonds, forming a rope-ladder chain along the c axis. The compound exhibits a ferromagnetic interaction between the Cu(II) and Fe(III) ions as a consequence of the orthogonality of their magnetic orbitals of σ and π nature, respectively. The magnetic data were fitted to the calculated magnetic susceptibility equation for a pentanuclear model, leading to the following magnetic parameters: J1=9.0(3)cm−1, J2=3.8(4)cm−1, g=2.2, θ=−1.2K. These results show that the interactions through the long Cu–N axial bonds are not so weak as is usually assumed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.