Abstract

Two Fe-Nb-Cu-Si-B alloys, (B9) and (B6), prepared with the isotope, have been analysed using data obtained by means of in situ neutron diffraction. This technique allows one to scrutinize crystallographic phases during thermal treatments, avoiding problems due to sample handling. The B9 sample develops Fe(Si) nanometric crystals (10 nm) with 19 at.% Si in the phase when it is annealed at for one hour. An increase to favours the growth of Fe(Si) grains and the crystallization of other phases, mostly Fe borides. A Rietveld analysis of these phases results in a good reproduction of the nominal composition of the alloy. It also elucidates the crystallographic structure of the Fe(Si) phase. This is similar to the structure, but with some of the Fe atoms occupying some (45%) of the Si 4a sites. The compositions and amounts of the phases derived are in agreement with Mössbauer spectroscopy results for the same sample. Knowledge of the Fe(Si) composition enables one to compare the different magnetic behaviours observed for bulk and nanocrystalline alloys. By contrast, B6 alloy does not show the presence of a Fe(Si) structure, presumably due to the lower amount of Si in the Fe(Si) phase. The thermal expansion of the phases that appear is fairly linear and the corresponding thermal expansion coefficients for the different phases have been extracted. The magnetic structure of the Fe(Si) phase is ferromagnetic collinear, without any trace of antiferromagnetic ordering. The thermal variation of the (1, 1, 1) magnetic peak intensity of the Fe(Si) phase matches well with reported DC magnetization results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call