Abstract
AbstractNonstoichiometric alumina‐rich spinel provides diverse and changeable local environments for transition‐metal dopants. In this contribution, novel Mg0.752Al2.165−xO4:xFe3+ deep red‐emitting phosphors were designed and prepared by the solid‐state reaction method. The red emission presents an unexpected shift from 735 to 770 nm by comparing with Fe3+‐doped MgAl2O4. The excitation spectrum of Mg0.752Al2.165−xO4:xFe3+ is broadened in the UV region with a new strong peak at 320 nm. The crystal structure refinement and NMR spectra fitting reveal that the cation vacancies and disorder increase with excess Al3+ entering the spinel crystal lattice. According to the results of EPR, NMR, and PL/PLE measurements, it was proposed that the Fe3+ ions locate at the distorted octahedral coordination. The changes of the local structure of Fe3+ ions promote the doublet state's involvement in the d−d transition. It was proposed that the new excitation peak at 320 nm in Mg0.752Al2.165−xO4:xFe3+ is associated with the transitions from the ground state 6A1g(6S) to the 4A2g(4F)/T1g(4P) and doublet states. The transition between the lower energy excited state of 2T2g(2I) and 6A1g(6S) mainly contributes to the deep red emission and the red‐shifting effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.