Abstract

Crystal and local structures (long- and short-range order, respectively) of four nanocrystalline zirconia-based solid solutions—ZrO2-6 and 16 mol % CaO and ZrO2-2.8 and 12 mol % Y2O3—synthesized by a pH-controlled nitrate-glycine gel-combustion process were studied. These materials were characterized by synchrotron X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) spectroscopy. Our XRD results indicate that the solid solution with low CaO and Y2O3 contents (6 and 2.8 mol %, respectively) exhibit a tetragonal crystallographic lattice, and those with higher CaO and Y2O3 contents (16 and 12 mol %, respectively) have a cubic lattice. Moreover, our EXAFS study demonstrates that the tetragonal-to-cubic phase transitions, for increasing CaO and Y2O3 contents, are both related to variations in the local symmetry of the Zr–O first neighbor coordination sphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call