Abstract

The Mg/MoS2 composites were prepared by ball milling under argon atmosphere, and the effect of MoS2 on the crystal structure and hydrogen storage properties of Mg was investigated. It is found that 10 wt% of MoS2 is sufficient to prevent particle aggregation and cold welding during the milling process. The crystallite size of Mg will remain constant at slightly less than 38.8 nm with the milling process due to the size confinement effect of MoS2. The dehydrogenation temperature of MgH2 is reduced to 390.4-429.4 °C due to the crystallite size reduction. Through fitting by Johnson-Mehl-Avrami model, it is found that Mg crystal grows by three dimension controlled by interface transformation during the process of MgH2 decomposition. MoS2 has a weak catalyst effect on the decomposition of MgH2 and activation energy of 148.9 kJ/mol is needed for the dehydrogenation process calculated by the Arrhenius equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.