Abstract

The crystal structure of o-toluidinium chloranilate and m-toluidinium chloranilate, 2CH3C6H4-NH3 + · C6O4Cl2 2−, was determined by single crystal X-ray diffraction at room temperature. It was found that o-toluidinium chloranilate (I) is monoclinic, P21/n (#14), Z = 2, a = 5.2184(14), b = 7.825(2), c = 22.840(5) Å , and β = 92.015(19)°, and m-toluidinium chloranilate (II) is monoclinic, P21/c (#14), Z = 2, a = 11.214(2), b = 5.4844(10), c = 16.379(6) Å, and β = 105.21(2)°. In these salts, the cations are connected with the anions by N-H... O hydrogen bonds to form 2:1 units of 2CH3C6H4NH3 + · C6O4Cl2 2− that are located on inversion centers. The 2CH3C6H4NH3 + · C6O4Cl2 2− units in both salts are connected by other N-H... O hydrogen bonds to build a three-dimensional hydrogen-bond network. Motions of the toluidinium ions in solid (I) and (II) were studied by 1H NMR spin-lattice relaxation time measurements. Reorientations of the NH3 + group about the C-N bond axis and the CH3 group about the C-C bond axis were observed, and their motional parameters were evaluated. The internal rotational barriers of the NH3 + and CH3 groups of an isolated o-toluidinium ion were estimated from ab initio molecular orbital calculations at HF/6-31G(d,p), MP2/6-31G(d,p), and B3LYP/6-31G(d,p) levels of theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.