Abstract
The effects of Fe-doping on the crystal structure and martensitic transformation (MT) temperature in MnCoGe alloy have been investigated by using x-ray diffraction, calorimetry and magnetic measurements. Substitution of Fe for Co atoms can stabilize the parent phase and significantly lower the MT temperature of the MnCoGe alloy. By tuning the Fe content, the magnetostructural transition from paramagnetic parent phase (i.e. austenite) with a Ni2In-type hexagonal structure to ferromagnetic TiNiSi-type martensite can be realized in a temperature window determined by the Curie temperature of the austenite and that of the martensite. A large difference in magnetization between the austenite and martensite, accompanied by the magnetostructural coupling, gives rise to the magnetic-field-induced temperature shift of MT, which makes the MnCo1−xFexGe alloys being a new kind of potential magnetic functional materials used as the magnetic-field-driven actuator or magnetic refrigeration material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.