Abstract
AbstractThe rheology of crustal mushes is a crucial parameter controlling melt segregation and magma flow. However, the relations between mush dynamics and crystal size and shape distribution remain poorly understood because of the complexity of melt‐crystal and crystal‐crystal interactions. We performed analog experiments to characterize the mechanisms that control pore space reduction associated with repacking. Three suspensions of monodisperse particles with different geometries and aspect ratios (1:1, 2:1, 4:1) in a viscous fluid were tested. Our results show that particle aspect ratios strongly control the melt extraction processes. We identify two competing mechanisms that enable melt extraction at grain scale. The first mechanism leads to continuous deformation and melt extraction and is associated with “diffuse” frictional dissipation between neighboring particles. The second is stochastic, localized, and nearly instantaneous and is associated with the development and destruction of force chains percolating through the granular assembly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.