Abstract
Polymorphism is ubiquitous in polymer crystallization due to the diversified chain conformations and interchain packings in polymer crystals. Controlling chain conformation is effective in tailoring the crystal polymorphism of polymers, which, however, is challenging at the molecular level. Herein, we have synthesized poly(butylene adipate) (PBA)-based copolymers containing C═C units and demonstrated the important role of trans/cis-C═C units in tuning the chain conformation and crystal polymorphism of polymers. Both PBA-based trans- and cis-copolymers show isodimorphic crystallization behavior with the partial inclusion of C═C units in PBA crystals. The presence of trans-C═C units favors the formation of metastable β-crystals of PBA and retards the β-to-α crystal transition upon heating due to the highly conformational matching between trans-C═C units and β-crystals. Conversely, the incorporation of cis-C═C units destroys the regularity of the trans conformation and favors the growth of α-crystals of PBA. This work has elucidated the crucial role of local chain conformation in the crystal polymorphism of polymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.