Abstract

From zinc acetates dispersed within monolayers of poled polymer ferroelectric lamellar crystals, the growth of zinc oxide nanorods has been surprisingly identified subject to antiparallel match between crystal dipoles, unveiling a new type of non-contact epitaxial relationship therefore. The involved phase interactions between antiparallel crystal dipoles significantly enhance reversible piezoelectric strains of both interacting crystals, and the achieved piezoelectric constants of polymer ferroelectric crystals are increased by one order of magnitude. As two interacting crystals are further separated, achieved piezoelectricity of individual crystals declines accordingly, similar to the influences of noncovalent interactions between molecules. Upon guided crystal clustering, the available phase interactions significantly increase dielectric constants of prepared monolayers from 23 to more than 100. In addition to separation distance, the number and size of interacting crystals have been experimentally clarified critical also for reached levels of piezoelectric responses. Conceivably, unveiled phase interactions are dependent on the augmentation and enhancement of electric fields yielded by interacting crystal dipoles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call