Abstract

The mechanistic modeling of irradiation induced embrittlement of reactor pressure vessel steels strongly depends on the precise evaluation of flow stress behavior. This requires accurate characterization of change in both the yield strength as well as the strain-hardening capacity. A dislocation-density based crystal plasticity model is thus developed in this work to quantify these variations with irradiation. The model considers the interaction between dislocations and irradiation induced defects such as self-interstitial atomic loops, vacancy clusters and precipitates to obtain flow stress variations in irradiated ferritic alloys. The model is calibrated and validated for polycrystalline pure-iron and iron-copper alloys, neutron-irradiated to different dose levels under typical pressure vessel operating conditions. A comparison with experimental results show that the model is able to quantify the changes in flow stress behavior accurately. At 0.2 dpa a loss of strain-hardening capacity beyond 2% strain is also obtained from the model. The yield strength increase with irradiation obtained from the model is also compared with analytical strengthening models based on Orowan’s equation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call