Abstract
Ultrafine-grained metals (UFGMs) produced by warm- or cold-rolling under severe plastic deformation have attracted interest as high-strength structural materials. UFGMs with a grain size less than 1μm exhibits remarkable material and mechanical properties, and a computational model predicting these properties is desired in the field of materials science and engineering. In order to clarify the utility of UFGM numerically, it is important to investigate the size effects of metallic materials that depend on initial grain size. It is assumed that such unusual mechanical properties originate in grain size and the enormous volume fraction of the grain boundary. When grains are of the submicron order, dislocation loops are hardly generated from Frank–Read sources smaller than the grain size. Grain boundaries play an important role in dislocation dynamics. In this study, we develop a crystal plasticity model considering the effect of the grain boundary and dislocation source. In order to predict variation of critical resolved shear stress (CRSS) due to grain boundaries or dislocation sources, information on dislocation source and grain boundary is introduced into a hardening law of crystal plasticity. In addition, FE simulation for FCC polycrystal is used to analyze stress–strain responses such as increased yield stress and yield point drop, from the viewpoint of grain size and dislocation density. We thoroughly investigate the effect of dislocation behavior on the material properties of UFGMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.