Abstract
Abstract In this study, fatigue crack propagation behavior at lower temperature in single crystal nickel-base superalloys was investigated experimentally and analytically. Four types of compact specimens with different combinations of crystal orientations in loading and crack propagation directions were prepared, and fatigue crack propagation tests were conducted at room temperature and 450°C. It was revealed in the experiments that the crack propagated in the shearing mode at room temperature, while the cracking mode transitioned from the opening to shearing mode at 450°C. Both the crack propagation rate and the transition behavior were strongly influenced by the crystallographic orientations. To interpret these experimental results, crystal plasticity finite element analysis was carried out, taking account some critical factors such as elastic anisotropy, crystal orientations, 3-D geometry of the crack plane and the activities of all 12 slip systems in the FCC crystal. A damage parameter based on the slip plane activities derived from the crystal plasticity analysis could successfully rationalize the effect of primary and secondary orientations on the crystallographic cracking, including the crack propagation paths and crack propagation rates under room temperature. The proposed damage parameter could also explain the transition from the opening to crystallographic cracking observed in the experiment under 450°C.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.