Abstract

Pyramidal microindentation into the (001) surface of an face-centered cubic (fcc) single crystal made of a Ni-base superalloy is analyzed in experiment and crystal plasticity finite-element simulations. The resultant material pile-up at the surface reflects the material’s symmetry and turns out to be insensitive to different loading scenarios as induced by (i) different azimuthal orientations of the pyramidal indenter, (ii) different indenter shapes (sphere or pyramid) and (iii) the elastic anisotropy. Experiments and simulations are in agreement and suggest that pile-up deformation patterns merely depend on the geometry of discrete slip systems but are invariant to different anisotropic stress distributions as induced by (i)–(iii). The local adaption of pile-up to the pyramidal indenter leads to convex or concave indent shapes corresponding to the indenter orientation. We contrast the present findings for curved indent shapes of fcc single crystals to similar, well-known observations for quasi-isotropic polycrystals. Although phenomenologically similar in kind, the driving mechanisms are different: for the single crystal it is the discrete and anisotropic nature of plastic glide in certain slip systems; for isotropic polycrystals it is the rate of strain-hardening caused by the cumulative response of dislocations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.