Abstract

Surface atom diffusion is a ubiquitous phenomenon in nanostructured metals with ultrahigh surface-to-volume ratios. However, the fundamental atomic mechanism of surface atom diffusion remains elusive. Here, we report in situ atomic-scale observations of surface pressure-driven atom diffusion in gold nanocrystals at room temperature using high-resolution transmission electron microscopy with a high-speed detection camera. The topmost layer of atoms on (001) plane initially diffuse in a column-by-column manner. As diffusion proceeds, the remaining atomic columns collectively inject into adjacent underlayer, accompanied by nucleation of a surface dislocation. In comparison, atoms on (111) plane directly diffuse to the base without collective injection. Quantitative calculations indicate that these crystal plane orientation-dependent atom diffusion behaviors contribute to the larger diffusion coefficient of (111) plane compared to (001) plane in addition to the effect of diffusion activation energy. Our findings provide valuable insights into atomic mechanisms of diffusion-dominant morphology evolution of nanostructured metals and guide the design of nanostructured materials with enhanced structural stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call