Abstract
The crystal plane effect has gained extensive attention in heterogeneous catalysis reactions; however, it is far from being systematically probed in titanium dioxide (TiO2)-supported vanadium catalysts. Herein, a series of vanadium (V) single atoms and clusters anchored on TiO2 with different crystal planes was fabricated by an improved "top-down" protocol. The dispersion state, electronic structure, and redox properties of the V single-atom and VOx cluster-supported catalysts were systematically analyzed by a series of characterization methods, including X-ray absorption near edge structure (XANES) and density functional theory (DFT) calculations, and their catalytic performances were examined for aerobic oxidative desulfurization (AODS) of 4,6-dimethyl-dibenzothiophen (4,6-DMDBT) with O2 as the oxidant. The results unveiled that the synergistic effect between the V single atom and the VOx cluster perceptibly promoted the catalytic performances of VOx/TiO2 samples. Therein, VOx/TiO2-(001) shows the lowest apparent activation energy (Ea) value of 46.3 kJ/mol and the optimal AODS performance with complete 4,6-DMDBT conversion to 4,6-dimethyldibenzothiophene sulfone (4,6-DMDBTO2) within 60 min at 120 °C as compared with VOx/TiO2-(101) (81.9 kJ/mol and 180 min) and VOx/TiO2-(100) (68.0 kJ/mol and 240 min), which should be attributed to its higher V5+/V4+ ratio, the optimal redox behavior of the V species, the moderate adsorption energy between 4,6-DMDBT and VOx active centers, and the synthetic effect of V single atoms and VOx clusters. Moreover, VOx/TiO2-(001) exhibits robust durability in seven cycles of reuse, showcasing the potential for practical applications in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.