Abstract
In this study, crystalline SnO2–WO3 nanocomposite thin films were grown through radio-frequency cosputtering of metallic Sn and ceramic WO3 targets. The W content in the SnO2 matrix was varied from 5.4 at% to 12.3 at% by changing the WO3 sputtering power during thin-film growth. Structural analyses showed that increased WO3 phase content in the nanocomposite films reduced the degree of crystallization of the SnO2 matrix. Moreover, the size of the composite films' surface crystallites increased with WO3 phase content, and the large surface crystallites were composed of numerous nanograins. Addition of WO3 crystals to the SnO2 matrix to form a composite film improved its light harvesting ability. The SnO2–WO3 nanocomposite films exhibited improved photodegradation ability for Rhodamine B dyes compared with their individual constituents (i.e., SnO2 and WO3 thin films), which is attributable to the suitable type II band alignment between the SnO2 and WO3. Moreover, an optimal WO3 phase content (W content: 5.4 at%) in the SnO2 matrix substantially enhanced the ethanol gas-sensing response of the SnO2 thin film. This suggested that the heterojunctions at the SnO2/WO3 interface regions in the nanocomposite film considerably affected its ethanol gas-sensing behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.